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The spatial distribution of the numerical disturbances that are generated during a numerical 
solution of a flow is examined. It is shown that the distribution of the disturbances is not 
uniform. In regions where the structure of a flow is simple, the magnitude of the generated dis- 
turbances is small and their decay is fast. However in complex-flow regions, as in separation 
and vertical areas, large-magnitude disturbances appear and their decay may be very slow. 
The observed nonuniformity of the numerical disturbances makes possible the reduction of the 
calculation time by application of, what may be called, the partial-grid calculation technique, 
in which a major part of the calculation procedure is applied in selective subregions, where 
the velocity disturbances are large, and not within the whole grid. This technique is expected 
to prove beneficial in large-scale calculations such as the flow about complete aircraft 
configurations at high angle of attack. Also, it has been shown that if the Navier-Stokes 
equations are written in a generalized coordinate system, then in regions in which the grid is 
tine, such as near solid boundaries, the norms become infinitesimally small, because in these 
regions the Jacobian has very large values. Thus, the norms, unless they are unscaled by the 
Jacobian, reflect only the changes that happen at the outer boundaries of the computation 
domain, where the value of the Jacobian approaches unity and not in the whole flow field. 
1‘ 1989 Academic Press. Inc 

1. INTRODUCTION 

For the numerical calculation of a flow, a reasonable initial solution is selected 
and an iterative process is applied until, by means of one or more convergence 
criteria, a converged solution is reached. The iterative procedure may last a few 
steps, or hundreds, or even thousands of steps, depending mainly on the nature of 
the flow, but also on the fineness of the grid and on the type of the numerical 
scheme. 

The convergence criteria that are currently used are numerical or physical ones. 
Thus, during a numerical solution, one may observe the variation of one of the 
norms of the residual of the finite-difference equations, or the variation of the dif- 
ference of the calculated quantities, from step to step, or, if appropriate, one may 
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check the value of a physical quantity, such as the lift or the pressure coefficient. 
In the first case, the calculation terminates when the norms or the differences reach 
an assumed “zero” value, while, in the latter case, when no more change is observed 
in the value of the coefficient. 

The classical convergence criteria reflect the variation of the mean value of a 
quantity and they do not give information about the distribution of this quantity 
within the examined flow field. However, the flows in general are nonuniform. Espe- 
cially large nonuniformities are observed in separated and vortex flows, in flows 
near boundaries, in shear flows, and in shock waves. In all these cases the kinematic 
and, probably, the thermodynamic quantities are subjected to a large variation, 
often in a region that is just a small portion of the whole flow field. Therefore it is 
expected that during the development of a numerical solution more steps will be 
required for the decay of the disturbances in these “complex” flow-regions, rather 
than in the ones which have a simpler structure. 

In this paper it will be shown that indeed, the intensity of the generated distur- 
bances to the calculated flow quantities and the time required for their decay is 
much higher in the complex-flow regions than in the simple-structure regions. Also, 
it will be shown that instead of the standard repetition of the numerical integration 
across all the extent of the computational domain (grid), until the solution con- 
verges, it is possible to do a part of the calculation cycle selectively, in subregions 
characterized by large values of the disturbance field. In this case the overall time 
required for the calculation of a flow will be smaller. Considering the present 
requirements for large-scale calculations about bodies at high incidence, this 
possibility is attractive. That because these types of flows are characterized by a 
rather simple structure in the windward side, and by a complex structure in the 
leeward side. Also, the computer time required for the estimation of the flow field 
about a modern air vehicle is of the order of tens of hours in a supercomputer. Thus 
there is a need to reduce the required computer time. 

For the calculation of the flows which are used for the study of the numerical dis- 
turbance fields, the code F3D of NASA Ames [ 1 ] was used. The code F3D is a 
two-factor, implicit, approximately factored, finite-difference code which solves a 
conservative form of the thin-layer Navier-Stokes equations cast in generalized 
coordinates, so that it can be readily used for computing flows about complex 
configurations. 

In the generalized form, all the terms of the Navier-Stokes equations are divided 
by the transformation Jacobian of the coordinates: J= 8(5, [, v)/~(x, y, z). The 
value of the Jacobian within a grid may vary by orders of magnitude. Especially 
large values are observed near walls, where usually the grid is fine, while at the 
outer layers of a grid the Jacobian tends to unity. It will be shown that this varia- 
tion may have a significant masking effect on the numerical mean-value con- 
vergence criteria, if the various quantities on which these criteria are based are not 
unscaled by the Jacobian. By combining the mean-value convergence criteria with 
surveys of the disturbance fields it was found that, unless the criteria are unscaled, 
the level of the disturbances near the wall is not shown. 
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2. GOVERNING EQUATIONS AND CALCULATIONS PROCEDURES 

The conservation equations of mass, momentum, and energy can be represented 
in a flux-vector form that is convenient for numerical simulation as [ 1 ] : 

a,& + a,@+ F”) + a,@ + 6”) + a,@+ A”) = 0, (1) 

where t is the time, and the independent spatial variables 5, ye, and i are chosen to 
map a curvilinear, body-conforming discretization into a uniform computational 
space. In the system used in this study, 5 denotes the curvilinear axis in the direc- 
tion of the main body axis, q denotes the circumferential, and [ the normal to the 
body direction. As opposed to the inviscid flux terms $, e, and fi, the terms FO=,, 
c.?, and fi, are fluxes containing the viscous derivatives. A nondimensional form of 
the equations is used throughout this work. Lengths are scaled by the length of the 
body, L, velocity components by the free-stream velocity of sound, uro, the pressure 
and the total energy per unit volume (e) by p,a&. The other quantities, such as 
T, p, ,U are scaled by their free-stream values. 

For body-conforming coordinates and high Reynolds number flow the thin-layer 
approximation can be applied [Z, 3,4], 

(2) 

where only viscous terms in the normal to the body direction are retained. These 
have been collected into the vector 3 and the nondimensional Reynolds number Re 
is factored from the viscous flux term. 

An implicit approximately factored scheme for the thin-layer, Navier-Stokes 
equations that uses central differencing in the q and [ directions and upwind 
differencing in the 5 direction can be written in the form 

(3) 

where h = dt or d t/2 for first- or second-order time accuracy, and the free-stream 
base solution is used. Here S is typically a three-point, second-order accurate, cen- 
tral difference operator, 6 is a midpoint operator used with the viscous terms, and 
the operators St and S$ are backward and forward three-point difference operators. 
The flux P has been split into E+ and P-, according to its eigenvalues [S], and the 
matrices A *, B, c, and n^l result from local linearization of the fluxes about the pre- 
vious time level. In Eq. (3) J denotes the Jacobian of the coordinate transforma- 
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tion. Dissipation operators, D, and D,, are used in the central space differencing 
directions [ 11. 

The factored left-hand side operators can be readily solved by sweeping in the 4 
direction and inverting tridiagonal matrices with five by live blocks. This two-factor 
implicit scheme is readily vectorized in planes of 4 = constant. 

Concerning the calculation procedure, during a numerical solution of a flow, it 
is known that in case of unsteady flows a time-accurate method must be employed. 
After the selection of some reasonable initial solution, an integration in time is 
done, with time steps commensurate with the unsteady phenomenon that is 
calculated. In steady state calculations, usually non-time-accurate techniques are 
applied, which bring the flow from an arbitrary initial gues to its asymptotic 
solution, with the least possible computational work. The use of a space varying 
time step is a classical technique, in this sense. 

Often, for simplicity, the impulsive start, i.e., the sudden immersion of a body in 
a uniform flow, is used. Various techniques have been developed that accelerate the 
convergence. For both steady and unsteady flows, a faster convergence is reached 
if instead of the impulsive start, a solution of a similar flow is applied initially. Also, 
in the case of an unsteady flow, it is better to calculate first an approximate steady 
solution and then to apply the time-accurate calculation. One way to accelerate 
convergence to a steady state is to obtain a good initial guess for a tine mesh by 
first iterating on a sequence of coarse grids and then interpolate the solution up to 
the next relined grid (see, for example, [6]). This is called the “nested iteration” 
procedure and basically originates from the well-known multigrid method. 

Some of the described techniques of acceleration of the convergence will be 
applied in the numerical solution of the flows that are used in this work, for study- 
ing their effect in the numerical disturbance field. 

3. DESCRIPTION OF THE CALCULATED FLOWS 

In this section, the flows that have been used for studying the spatial variation 
of the disturbance field will be briefly described. The detailed results of the 
investigated flows will be reported in other particular publications. 

The first case is related to the calculation of the turbulent flow about a prolate 
spheroid, at c( = 30”, M, = 0.25 and Re, = 43 x 106. The prolate spheroid is a body 
of simple geometry that can provide significant understanding of the complex flow 
that can develop about axisymmetric bodies at incidence. In a cross section of such 
a flow, under the action of circumferential pressure gradient, the outer flow 
approaching the windward plane of symmetry turns and flows outwards along the 
body, from the windward toward the leeward side. The boundary layer which is 
formed in this way, separates from the body at a point on the leeward side. The 
fluid then leaves the body along a feeding sheet and rolls up to form a primary 
vortex system on the leeward side of the body. The pair of the primary vortices 
induces a flow toward the body surface, which at the point of attachment turns 
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outwards toward the windward side. For primary vortices of sufficient strength, a 
secondary separation is induced to the boundary layer below them. Thus, a 
secondary vortex structure may appear that rotates in an opposite direction from 
the primary one. Both the vortex systems are carried downstream by the axial 
component of the flow. 

Results of the calculations are shown in Fig. 1. The primary vortex structure is 
clearly shown in the velocity-vectors plot (Fig. lb), while the existence of the 
secondary vortex is detected more easily in Fig. la, where surface particle traces are 
used to simulate the surface shear stress lines visualized in oil flow experiments. 
These lines converge toward the primary and the secondary separation lines and 
diverge from the attachment line, which lies between them. 

b ’ I 

FIG. 1. The calculated flow field about the prolate spheroid: (a) surface oil flow simulation; 
(b) crossflow velocity vectors at x/L = 0.50. 
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The calculation was non-time-accurate, with the time step varying in space, as a 
function of the local Jacobian. No similar solution was available, so the flow was 
started by imposing impulsive conditions. The grid that was used consisted of 121 
points along the direction of the main axis of the body, 100 points around its cir- 
cular section and 65 points radially from the surface. Initially, for accelerating the 
solution, a coarse grid was used. That grid was formed by considering each second 
point of the regular grid, in the streamwise and in the circumferential directions. 
Also, the values of the coefficients of the numerical viscosity terms of Eq. (3), 
initially were rather large, also for the purpose of acceleration of the convergence. 

A final change that was imposed during the numerical solution was related to an 
improvement of the turbulence model. The standard model used in the code F3D, 
is the two-layer, Cebeci type, algebraic eddy-viscosity model reported by Baldwin 
and Lomax (Ref. [2]). In this model the value of the turbulence viscosity coef- 
ficient, p,, at a particular velocity profile is a function of the maximum of the 
product of the vorticity and the distance from the wall. Degani and Schiff [7] have 
observed that in flows which include crossflow vortices there exist two maxima in 
the distribution of the vorticity product in the velocity profiles, one caused by the 
boundary layer and one caused by the overlying vertical structure. The considera- 
tion of only the lower maximum gives better results. In the calculation of the flow 
about the prolate spheroid, initially no distinction had been made between the max- 
imum of the vorticity product caused by the boundary layer and the one caused by 
the vortex. Later in the calculation, this distinction was considered. This change 
affected strongly the separated vertical region. The primary vortices became larger 
and the secondary vortices, which previously had not shown, appeared. The 
attached-flow was not affected by this change because there the value of the pt was 
kept the same. 

All of the forementioned changes that were applied during the calculation had an 
impact in the state of the numerical solution, in the sense that when one of these 
changes was imposed, the solution was perturbed. Thus, an excellent opportunity 
appeared for studying the spatial growth and decay of the velocity perturbations 
during the process of convergence. 

The second case that is used in this work is related to the impingement of a jet, 
in the presence of a crossflow. In the simulation, the jet was originated from a 
nozzle and it was directed perpendicularly to the ground. The ratio of the crossflow 
velocity to the mean jet velocity was equal to 0.223, and the Reynolds number, 
based on the diameter of the nozzle, was 4.4 x 10’. The flow was calculated as a tur- 
bulent one. Van Dalsem [8] has investigated the case where the nozzle has a cir- 
cular cross section. The present author has studied the case of a jet of elliptical 
cross section [9]. The axes ratio has been variable and the major axis has been 
aligned or normal to the crossflow. In this paper, the case of axes ratio equal to 1.5, 
with the major axis aligned with the crossflow, will be used for the study of the 
numerical disturbance field. 

In this case the calculations were time accurate and the solution of the round jet 
was used as the initial one. After changing the grid to account for the new cross sec- 
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FIG. 2. Results of jet in crossflow: (a) trajectories of particles released from the jet; (b) velocity 
vectors in the streamwise symmetry plane. 
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tion, the calculation started with the assumption that at each point the flow quan- 
tities were those of the round jet. The resulting perturbation and its gradual decay 
will be analysed in the next section. To give an idea of the particular flow, in 
Fig. 2a, the trajectories of particle traces released from the nozzle face are shown. 
Also, in Fig. 2b the velocity vectors are shown in the vertical symmetry plane. 

4. RESULTS 

4.1. Generation and Decay of the Disturbances 

For the study of the generation and decay of the disturbance field during the 
computation of the flows that have been selected, mean-value, as well as distribu- 
tion convergence criteria will be used. The I, norm, or Euclidean norm, is the most 
widely used mean-value criterion. It reflects the change of the residual of the linite- 
difference equations. In this paper, the I, norm will be used, scaled or unscaled, with 
the Jacobian. In addition, the mean-value of AQ will be used. Refering to Eq. (3) 
and a grid of N points, these quantities are defined by: 

(4) 

(5) 

where R(r,, j) denotes the 5-component RHS of Eq. (3), ri being the position vector 
of the various grid points. 

The change of the velocity field (Aui, i = 1, 2, 3) between two successive steps, has 
been selected for studying the spatial variation of the disturbance of a numerical 
solution. The Auj is defined by the relation a;+’ = u; + Au,. In what follows, Aui 
will be called the velocity disturbance. When the velocity disturbance during a 
numerical solution of a flow is equal to zero, it is assumed that the flow solution 
has converged. In the various velocity plots that will be presented in this paper, the 
Aui have been magnified by a factor of 103-105, so that their change will be visible. 
In this type of plot the vectors may cross a solid boundary. 

Starting with the case of the prolate spheroid, the history of the generation and 
decay of the mean value of the AQ-disturbances is shown in Fig. 3. It is seen in 
Fig. 3 that the initial strong perturbation, because of the assumption of uniform 
flow conditions gradually decays, but not smoothly. Three large discontinuous 
increases are observed in the velocity disturbance. These discontinuities reflect the 
perturbation of the numerical solution each time that a change was imposed. The 
first discontinuity appears at N = 250 (number of iterations), where the coarse-grid 
solution was interpolated into the line grid. The next change was imposed at 
N = 530, and it was related to the reduction of the values of the coefficients of the 
numerical dissipation terms. Again, this disturbance has shown up in the AQ curve, 
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FIG. 3. Variation of AQ during the calculation of the flow about the prolate spheroid. 

by a considerable jump. However, the largest disturbance appeared when the 
turbulence model changed at N= 1830. It is seen in Fig. 3 that the LIQ curve 
presents a discontinuous increase of two orders of magnitude at this point in the 
convergence history. 

Concerning the development in time of the spatial variation of the numerical dis- 
turbance field, the present results suggest that when a perturbation is imposed in 
the solution, large disturbances are generated at those points of the flow (grid) on 
which the new values imposed are different from the previous ones. During the 
immediate subsequent cycles of calculation, the disturbances propagate away from 
the initial regions of disturbance and gradually cover a large volume, which may or 
may not be equal to the whole calculation domain, depending on the strength of 
the disturbances. Then the disturbances start to decay, so that gradually the pertur- 
bation domain shrinks towards the initial perturbation region and from there 
towards low value, in the case of a steady flow. The present data has not covered 
the case of the unsteady flow. However, it seems that in that case numerical distur- 
bances will always be present in the unsteady part of the flow, but not in the whole 
flow field. 

Of great importance for practical applications is the fact that the regions in which 
the numerical disturbances are large coincide with the regions in which the flow has 
large gradients. Thus it is easy to anticipate where it will take more time for a 
numerical solution to converge. 

A clear demonstration of the nonuniform generation and decay of the numerical 
disturbances is given by Fig. 4, in which the history of the development of the 
numerical disturbance field is given, in the case of the reduction of the value of the 
numerical dissipation terms. It is seen in Fig. 4 that the disturbances initially appear 
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FIG. 4. Prolate spheroid calculations. History of development of the numerical disturbance field, 
after the solution was disturbed by reducing the numerical dissipation terms. 
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FIGURE 4-Continued 

near the surface of the body (Fig. 4a). Then they propagate and cover the boundary 
layer and the vertical separation region at the leeward region (Fig. 4b); in the rest 
domain, “silence” conditions prevail. Gradually the disturbances die out and 
uniform conditions of “silence” are established everywhere (Figs. 4~2). 

As additional evidence of the nonuniform convergence of a numerical solution, in 
Fig. 5 the impact of the modification of the turbulence model on the numerical 
disturbance field is shown, at the time step N= 1830. It has been mentioned in 
Section 3 that this modification has affected only the separated-flow region and not 
the attached one. In Fig. 5 the same is seen to happen to the numerical disturbance 
field. The disturbances appear only in the leeward vertical region, where the 
crossflow separation exists, propagate outwards to account for the enlargement of 
the vortices, and gradually decay when equilibrium conditions have been reached. 
In the windward region, where the flow is attached, the numerical solution is not 
disturbed at all. 

In the case of the impinging jet in the presence of a crossflow, the behaviour of 
the numerical disturbance field was found to be exactly similar to that of the flow 
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FIG. 5. Prolate spheroid calculations. History of development of the numerical disturbance field, 
after the solution was disturbed by changing the turbulence model, 
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FIG. 6. Jet in crossflow calculations. History of development of the numerical disturbance lield, after 
the solution was disturbed by changing the cross section of the jet from circular to elliptic. 
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about the prolate spheroid. The evolution of the disturbance field is shown in Fig. 6. 
As soon as the geometry of the grid is perturbed, by changing the circular nozzle 
into one of elliptic cross sections large disturbances appear on the upstream face of 
the nozzle and, mainly, in the region of the jet (Fig. 6a). The disturbances 
propagate radially but they do not cover the whole calculation domain (Fig. 6b). 
The equilibrium conditions start to be established initially on the outer layers and 
gradually reach the jet (Fig. 6~). After 600 steps (Fig. 6d) the disturbance field has 
been restricted to the vicinity of the jet and of the ground vortex and to the 
downstream wall flow. From then on, 1100 steps were required for the decay of 
these localized disturbances (Fig. 6e). The final decay of the disturbances is an 
indication that the flow is rather steady. Also, Van Dalsem [8] has concluded that 
the round jet configuration, which he studied, shows only a small unsteadiness. 
Van Dalsem tried to develop a self-sustained unsteady jet in ground effect, by 
varying periodically the jet-exit velocity. However, once the forced pulsing was 
removed the flow quickly returned to a relatively steady state condition. 

4.2. Effect of the Value of the Jacobian 

In the expression of the Navier-Stokes equations in a generalized system of coor- 
dinates all the terms are divided by the transformation Jacobian of the system of 
coordinates. However, the value of the Jacobian within a grid may vary by orders 

20 0 40 0 60 0 80 0 

streamwise or normal(L) direction 

FIG. 7. Prolate spheroid calculations. Variation of the transformation Jacobian of the coordinates, 
across the grid. 
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of magnitude. This variation affects the value of the numerical convergence criteria, 
because the disturbance quantities, on which the criteria are based, have been 
divided at the various points of the flow field by the variable Jacobian. Thus, the 
level of the disturbances in regions where the Jacobian has large values will be 
masked. This undesired effect of the Jacobian will be examined in this section. 

The variation of the Jacobian in the crossflow and in the streamwise direction of 
the prolate spheroid is shown in Fig. 7. In this figure the horizontal coordinate 
denotes the streamwise (J) or the normal (L) direction to the surface. The scale 
indicates grid points. The variation of the Jacobian is given in the normal to the 
surface of the body direction at three streamwise stations: at the origin (J= l), in 
the middle (J= 5,,,/2) and at the end (J= J,,,) of the body. Also, at two stations, 
in the parallel to the surface direction: along the wall (L = 1) and along the 
L = kn,x line. The greatest variation of the Jacobian happens in the normal to the 
body direction. Thus, on the surface of the ellipsoid the Jacobian may be equal to 
lOlo, depending on the axial position, while at the outer boundaries of the grid it 
may be even smaller than unity. In the streamwise direction the variation is some- 
what smaller, the extreme values vary only three order of magnitude. 

In the case of the jet in a cross-flow configuration high values of the Jacobian 
appear in the vicinity of the jet and near the impingement surface. The value of the 
Jacobian there is live to seven orders of magnitude greater than in the far field 

\ 

-9t 
streamwise or normal(L) direction 

30 

FIG. 8. Jet in crossflow calculations. Variation of the transformation Jacobian of the coordinates, 
across the grid. 
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(Fig. 8). However, it is the jet and especially its impingement region where the 
greater values of the numerical disturbances occur (Fig. 6). 

The masking effect of the Jacobian is very clearly shown if the values of the I, 
norm are estimated, during a numerical calculation, with the residual of the 
Navier-Stokes equations scaled or unscaled by .I. The results of this type of calcula- 
tion are shown in Fig. 9, for the case of the prolate spheroid. The unscaled Z2 norm 
curve (Fig. 9a) is similar in shape with the LIQ curve (Fig. 3). All the changes that 

102 

10 

0 400 800 1200 1600 2000 2400 2800 3200 
NUMBER OF ITERATIONS 

FIG. 9. Prolate spheroid calculations. History of the I, norm: (a) unscaled; (b) scaled by the trans- 
formation Jacobian. 
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were applied during the numerical solution are shown in this curve, by discon- 
tinuous increases of the disturbance value. On the contrary, it is hard to detect the 
effect of the changes on the convergence level in the case of the standard Z2 norm 
curve (Fig. 9b). It is only the change of the turbulence model that somehow is 
detected, by a small discontinuous change at N= 1830, and then by a gradual 
increase. We are reminded that in this particular application the disturbances start 
to grow near the surface and then propagate outwards (Section 4.1). In the case of 
the change of the turbulence model, the outward extent was great because the 
vortex structure was strongly affected. 

FIG. 10. Jet in crossflow calculations. History of the I, norm: (a) unscaled; (b) scaled by the trans- 
formation Jacobian. 
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The same observations apply, also, in the case of the jet in crossflow. The varia- 
tion of the two I, norms is given in Fig. 10. It is seen that while the unscaled I, 
norm curve (Fig. 10a) presents repeated, if not periodic, fluctuations, the standard 
I2 norm (Fig. lob) is very smooth. An examination of the velocity-disturbance plots 
indicated that these fluctuations correspond to disturbance burstings within the jet 
at the impingement region near the wall. Most probably these burstings are of 
numerical nature and do not indicate unsteadiness of the flow. A detailed examina- 
tion is necessary. It is evident from this example that the standard I, norm is not 
appropriate to detect disturbances near the wall. 

The judgment of the state of convergence from the variation of the I, norm is 
more critical in the case of a laminar flow than in the case of a turbulent one, 
because in a laminar flow the natural dissipation is much smaller. So when the 
numerical dissipation is reduced at the final stages of a calculation, the overall dis- 
sipation is small. Thus, instabilities may develop near the surface of a body, where 
due to the fineness of the grid the dissipation is very small. A demonstration of the 
conditions that may develop is provided in Fig. 11, where the disturbance field is 
shown about the prolate spheroid in the case of a laminar flow. The flow conditions 
for this calculation were c1= lo”, M, = 0.166, and Re,= 7.7. x 106. It is seen in 
Fig. 11 that in a small region near the sting, at the windward side, strong disturban- 
ces persist, while in the rest calculation domain the disturbances have decayed. The 
persistance of these disturbances affects the quality of the predicted flow, locally. If 
the scaled by the Jacobian 1, norm is consulted, this local non-convergence is not 
detected (Fig. 12a). In contradiction, the unscaled 1, norm, Fig. 12b, clearly 
indicates that the flow has not converged yet. 

A final illustration of the effect of the Jacobian is given in Fig. 13, where the 
variation of the I, norm in the direction normal to the surface of the prolate 
spheroid is shown, at two positions; one on the windward side of the flow (4 = 30”) 
and one on the leeward side (4 = 150”). This figure corresponds to Fig. 4b. It is 
seen, in Fig. 13, that in the case of the unscaled by the Jacobian l2 norms, their 

FIG. 11. The numerical disturbance lield during the solution of a laminar flow about the prolate 
spheroid. 
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FIG. 12. Laminar-flow about a prolate-spheroid. History of the I, norm: (a) scaled; (b) unscaled by 
the transformation Jacobian. 

values are orders of magnitude higher near the surface than in the far field. On the 
contrary, the scaled 1, norms have higher values in the far field and not near the 
surface. 

Also, noteworth, in Fig. 13 is the fact that the I, norms have an order-of- 
magnitude higher values in the region of the vortices, on the leeward side, than in 
the corresponding windward region. This fact is in agreement with the observed 
variation of the velocity disturbance field shown in Fig. 4b. This justifies the use of 
the velocity disturbance field for judging the convergence state of a numerical 
solution. 
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FIG. 13. Prolate-spheroid calculation. Spatial variation of the I2 norm. 

4.3. Partial-Grid Calculations 

The observed nonuniformity of the numerical perturbation field and the concen- 
tration of the disturbances in rather small regions, during most of the calculation 
time, suggest that for the estimation of a flow field it is worth applying what may 
be called a partial-grid calculation technique. According to this technique, during 
a certain number of iteration steps the calculation will be restricted to a region 
which will be equal to a part of the overall numerical domain. This region will be 
characterized by the existence of large numerical disturbances, while outside this 
region the level of disturbances will be very small or zero. In this way a numerical 
solution will be accelerated, because, although the total number of the iterations 
will be equal to, or even greater than, the number required for the convergence of 
the solution by application of the standard technique of the full-grid calculation, the 
equivalent number of full-grid iterations will be smaller. The technique of local 
iterations has also been used by Cline [lo] in the VNAP codes. 

There are various possibilities for the application of the technique of the partial- 
grid calculation. In case of an unsteady flow, and assuming that an asymptotic 
steady solution is available, it is necessary to iterate from time to time between the 
partial-grid solution, which will be aplied to the varying part of the flow and the 
full-grid calculation, so that the disturbances will be free to propagate. 

In the case of a steady flow calculation a reasonable approach is first to reach the 
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FIG. 14. Partial-grid calculation. History of development of the numerical disturbance field. 
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full-grid calculation to such a level that the disturbances will be significant only in 
a small domain; then to apply a partial-grid calculation, until “silence” conditions 
are established in the disturbance region. After this, the full-grid calculations may 
be repeated till the flow will be assumed to have converged by means of a mean- 
value criterion. Alternatively, the full-grid calculations may not be repeated after 
the partial-grid calculations, if the overall convergence level is considered as being 
satisfactory. 

The technique of the partial-grid calculation was validated by being applied in 
the case of the impinging jet. The partial-grid calculations started at N= 500 of the 
full-grid solution. Then the partial-grid calculation was applied first to a cylindrical 
region that starts from the exit of the nozzle, it extends to the ground and encloses 
the numerically most active part of the jet. The ratio of the partial grid to the full 
grid was 1:3. After the disturbances were signicantly reduced (300 steps), the radius 
of the cylindrical region was increased, so that the downstream region of disturban- 
ces was enclosed within the calculation domain, The enlarged partial grid was 
about half of the total grid. The calculation was continued in the enlarged partial 
grid until the total number of steps became equal to the number required for the 
full-grid solution to converge, i.e., 1700 steps. The equivalent full-grid number of 
steps was only 1000. Thus, with this partial-grid calculation about 40% of the 
computation time was saved. 

Some instances of the numerical disturbance field during the partial-grid calcula- 
tion are shown in Fig. 14; the starting conditions (Fig. 14a), the end of the f partial 
calculation (Fig. 14b), the extension of the calculation to the i of the grid (Fig. 14c), 
and the final conditions (Fig. 14d). If the full-grid calculation procedure was 
applied, the disturbance field at the equivalent number of steps (consuming the 
same computation time) would be like the one shown in Fig. 14e. The positive effect 
of the partial-grid calculation is evident if the equivalent Figs. 14d and 14e are 
compared. In addition, the final partial-grid results compare well with the final 
full-grid results (Fig. 6e). 

The calculated flow characteristics of the partial-grid solution were the same as 
those of the full-grid solution. For a qualitative comparison, the development of the 
mean value of dQ is shown in Fig. 15, for both the full-grid and the partial-grid 
calculation. The mean AQ, in the case of the partial-grid calculations is based on 
the actual domain of calculation. The agreement between the final convergence level 
of the two calculations and the discontinuous increase of the disturbance value, 
observed in the partial-grid calculation curve when the grid was extended, are the 
major points to be noted in Fig. 15, At this point it is clarified that for the estima- 
tion of the mean AQ during the partial-grid calculation, the upper part of the grid 
is not considered because the flow there is kept constant and is assumed to have 
converged sufficiently. If one has to repeat the computation in the whole grid, in a 
particular application, after applying the partial-grid technique, the flow will be dis- 
turbed at the boundaries of the two parts of the grids, but experience has shown 
that the decay will be very fast, especially if the partial grid is so selected that the 
disturbances at its boundary are small. 
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FIG. 15. Variation of AQ during the partial-grid calculation. 

To conclude, the application of the partial-grid calculation technique in the case 
of the jet in crossflow has demonstrated the potential of this technique in accelerat- 
ing the convergence of a numerical solution of a flow. In the simple configuration 
of the jet it was possible to reduce the number of iterations by 40%. In more com- 
plicated cases the gain will be higher. For example, if the jet was issued from a wing 
and not from a cylinder, the grid points which would be included within the jet-dis- 
turbance region, where the partial-grid calculation was applied, would be much less 
than half of the total number of grid points. It is expected that this technique will 
be beneficial for all flow conditions that include localized complex-flow regions. 
Also, the study of store separation by application of the multiple mesh scheme [ 111 
is another class of problems, which seems promising for the application of the par- 
tial-grid technique. In this scheme a complex configuration is mapped by using a 
major grid about the main component of the configuration; minor overset meshes 
are used to map each additional component like a store. It is expected that the 
disturbances that are generated during the advance in time of the minor meshes 
(stores) do not cover the whole major grid. So, in such a calculation, it will be 
sufficient each time to estimate only a part of the flow field about the major 
component. 

5. CONCLUSIONS 

In this work, the spatial variation of the numerical disturbances that are 
generated during a numerical solution of a flow is examined. By considering the 
generation and decay of the velocity disturbances, it is shown that the disturbance 
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field is not uniform. More specifically, the decay of the disturbances, or equivalently 
the convergence of the solution, is fast in regions where the structure of the flow is 
simple, but it takes a large number of iterations for the disturbances to decay in 
complex-flow regions, as in separation and vertical areas and in shear flows. 

The observed nonuniformity of the numerical disturbances makes the reduction 
of the calculation time possible by application of the partial-grid calculation techni- 
que, in which a part of the calculation procedure is applied in selective subregions, 
where the velocity disturbances are large, and not within the whole grid. In the par- 
ticular case of the jet in ground effect that the partial-grid technique was tested, a 
40% reduction of the number of iterations was obtained. It is expected that this 
technique will prove beneficial in large-scale calculations, such as the flow about 
complete aircraft configurations at high angles of attack, the study of vortices 
generated on the tips of a helicopter rotor, and the shock-boundary layer interaction 
observed on the upper surface of a wing. 

The partial-grid calculation technique may be viewed as belonging to the same 
class of acceleration methods with the multigrid method, i.e., by controlling the 
grid. However, it is noted that their principles and purpose are quite different. 
While the partial-grid technique is based on the locally non-uniform decay of the 
numerical disturbances, the multigrid method essentially deals with the stiffness of 
the system of the difference equations; its purpose is the damping of the high- 
frequency waves by employing a sequence of successively coarser grids in addition 
to the selected fine grid. Actually the two methods may be combined in the same 
calculation scheme. 

A secondary issue that has been addressed in the present paper is the effect of the 
Jacobian of the coordinate transformation on the value of the mean-value criteria, 
such as the I, norm, if the Navier-Stokes equations are written in a generalized 
coordinate system. In this case all the terms of the equations are divided by the 
transformation Jacobian. In practice, when the equations are solved numerically, 
the scaling of the terms by the Jacobian is used during the whole procedure. The 
solution of the flow, i.e., the Q-vectors, are unscaled at the end of the computation. 
Thus, when the quantities, on which the calculation of the norms or of the mean 
LIQ is based, are evaluated during an iteration, they include the effect of the 
Jacobian. Consequently, their value appears to be inlinitesimally small in regions in 
which the grid is tine, such as near solid boundaries, because in these regions the 
Jacobian has very large values. Actually, they reflect changes that happen at the 
outer boundaries of the computation domain, where the Jacobian approaches unity 
and not in the whole flow field. This situation is corrected if the quantities on which 
the mean-value criteria are based are unscaled by the Jacobian, before convergence 
tests are conducted, at each time step. Of course, unsealing is not the only remedy. 
Many investigators employ relative error tests, basically to handle scaling problems 
in general, independent of whether they arise from geometry. 

In this paper the velocity disturbance field was used for judging the convergence 
state of a numerical solution. This type of plot proved very useful. Details that 
otherwise would not be detected, like the existence of small instability regions near 
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the surface of a body, were easily identified. The use of the velocity disturbance field 
is highly recommended in large-scale computing, where a calculation requires many 
computer hours and it is not done at once. 
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